A novel adaptive hybrid crossover operator for multiobjective evolutionary algorithm
نویسندگان
چکیده
In this paper, a novel recombination operator, called adaptive hybrid crossover operator (AHX), is designed for tackling continuous multiobjective optimization problems (MOPs), which works effectively to enhance the search capability of multiobjective evolutionary algorithms (MOEAs). Different from the existing hybrid operators that are commonly operated on chromosome level, the proposed operator is executed on gene level to combine the advantages of simulated binary crossover (SBX) with local search ability and differential evolution (DE) with strong global search capability. More opportunities are assigned to DE in the early evolutionary stage for gene-level global search in decision space; whereas, with the generation grows, more chances are gradually allocated to SBX for gene-level local search. The balance between the gene-level global and local search is well maintained by an adaptive control approach in AHX. To validate the effectiveness of AHX, it is studied by substituting the original recombination operators in the four state-of-the-art MOEAs (i.e., NSGA-II, SPEA2, SMS-EMOA, and MOEA/D), and the performance of revised algorithms is significantly improved. Furthermore, AHX is also compared to three recently proposed recombination operators, such as a newly DE inspired (DEI) recombination operator, a learning paradigm based on jumping genes (JGBL) and a bandit-based adaptive operator selection approach (FRRMAB). The experimental studies validate that AHX can be effectively integrated into different frameworks of MOEAs, and performs better than SBX, DE, DEI, JGBL and FRRMAB in solving various kinds of MOPs. © 2016 Elsevier Inc. All rights reserved.
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملA novel hybrid multi-objective immune algorithm with adaptive differential evolution
In this paper, we propose a novel hybrid multi-objective immune algorithm with adaptive differential evolution, named ADE-MOIA, in which the introduction of differential evolution (DE) into multiobjective immune algorithm (MOIA) combines their respective advantages and thus enhances the robustness to solve various kinds of MOPs. In ADE-MOIA, in order to effectively cooperate DE with MOIA, we pr...
متن کاملA Comparison of Crossover Operators in Neural Network Feature Selection with Multiobjective Evolutionary Algorithms
Genetic Algorithms are often employed for neural network feature selection. The efficiency of the search for a good subset of features, depends on the capability of the recombination operator to construct building blocks which perform well, based on existing genetic material. In this paper, a commonality-based crossover operator is employed, in a multiobjective evolutionary setting. The operato...
متن کاملAdaptive directional local search strategy for hybrid evolutionary multiobjective optimization
A novel adaptive local search method is developed for hybrid evolutionary multiobjective algorithms (EMOA) to improve convergence to the Pareto front in multiobjective optimization. The concepts of local and global effectiveness of a local search operator are suggested for dynamic adjustment of adaptation parameters. Local effectiveness is measured by quantitative comparison of improvements in ...
متن کاملAn Improved Clonal Algorithm in Multiobjective Optimization
In this paper, we develop a novel clonal algorithm for multiobjective optimization (NCMO) which is improved from three approaches, i.e., dynamic mutation probability, dynamic simulated binary crossover (D-SBX) operator and hybrid mutation operator combining with Gaussian and polynomial mutations (GP-HM operator). Among them, the GP-HM operator is controlled by the dynamic mutation probability. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 345 شماره
صفحات -
تاریخ انتشار 2016